200 Years of Michigan Fish

Part 3 of a four-part series on Michigan’s fisheries

Michigan boasts 11,000 lakes, 36,000 miles of streams and rivers, and is surrounded by the largest freshwater lakes on Earth. Over the past two hundred years, European settlers and their descendants have done much to alter these natural systems and the creatures inhabiting them. This article is the third in a series examining how humans have changed – and are still changing – fish diversity and abundance in Michigan through greed, stewardship, ignorance and intention.

Throughout the 19th, 20th, and 21st centuries, there have been numerous intentional and accidental fish introductions into the Great Lakes and its tributaries. Only some of these species were able to establish reproducing populations. As mentioned in part one of this series, non-native brown and rainbow trout were intentionally introduced and thrived, and are major contributors to Michigan’s sport fisheries. The American eel and the cutthroat trout are two examples of fish that were introduced but failed to establish reproducing populations.

Fish introductions can be considered good or bad depending on any particular person’s perspective. For example, the common carp has been around for almost 150 years and is widely considered a nuisance species, although many anglers like the challenge of landing such a large fish. Regardless of perspective, there is no argument that the Great Lakes fishery ecosystems have changed irreparably.

Coho and Chinook salmon were introduced in the early 20th century but did not thrive as a sport fishery until they were actively stocked starting in 1966. The stocking of these two salmonids in particular is a very interesting ecological story of the interactions between the salmon, the native lake trout, and two invasive species: the alewife and the sea lamprey.

This lampey mouth seems like something from a sci-fi horror movie but, to a fish, it is an all-too-real threat to survival. Credit: U.S. Fish and Wildlife Service.

Honey, We Shrunk the Huron!

University researchers tackle big problems on a small scale

In the past several decades, many aquatic ecosystems, including the Huron River, have been exposed to new and increasing amounts of stress. This stress has come in a variety of forms, including increasing use of chemicals, changing climate, and losses of biodiversity, and this has affected these environments at local, regional, and global scales. Many of these stressors don’t show any indication of going away on their own either, and will likely continue to impact freshwater ecosystems far into the future. If we wanted to be proactive and start thinking about which stressor(s) might cause the biggest problems in the future, how would we identify the worst offenders? Can we predict the effects of these stressors on our streams? Well, we can’t go and dump herbicides into the Huron as an experiment, and there’s no switch...
This spring, the U.S. EPA released its National Rivers and Streams Assessment (NRSA). The goals of the NRSA are to determine the extent to which rivers and streams support a healthy biological condition and the extent of major stressors that affect them. In addition, the survey supports a longer-term goal: to determine whether our rivers and streams are getting cleaner, and how we might best invest in protecting and restoring them.

The report is based on field work from 2008-2009 and presents a picture of the state of the nation’s rivers and streams. I met the results with mixed emotions. Our rivers and streams are under significant stress, and more than half exhibit poor biological conditions. Phosphorus, nitrogen, and streambed sediments in particular have widespread and severe impacts; reducing levels of these constituents will significantly improve the biological health of rivers and streams. This survey points to the need to address the many sources of these stressors – including runoff from urban areas, agricultural practices, and wastewater – in order to ensure healthier waters for future generations. Yet streams also saw some improvements since the last assessment (2004): the percent of stream length with good in-stream fish habitat rose from 51.7% to 68.9%; and the percent of stream length with low levels of disturbance rose from 22.7% to 34.8%. These summary statements echo the struggles here in the Huron.

We have many signs of improved stream and river health, yet we still have major problems. Many of our monitoring sites are seeing improved habitat and water quality, and greater biodiversity. We are seeing the restoration and protection of hundreds of acres of natural areas and streambanks, as well as many water quality improvement projects. At the same time, erratic flows, excessive phosphorus, runoff, and dams plague the river and stream health. Overall, the Huron is on the upswing – seeing declining phosphorus trends, the clean-up of contaminated sites, stronger regulations for river and land protection, and dedicated funding for water quality projects. As a result, there are more opportunities to get out and enjoy the river, and more people are taking advantage of those opportunities. The Huron is increasingly seen as one of the “main streets” of our communities, a central gathering place, and a hub of activity. This progress is thanks to the strong community of visionaries, scientists, and stewards who continue to advocate for the watershed, making the Huron a bright spot on the national map of rivers and streams!

– Laura Rubin

There is a new funding source for dam removal and restoration through the MDNR. In 2011, Governor Snyder noted the problem of the hundreds of old and crumbling dams in his infrastructure talk. The state followed up on this point by dedicating $2.3 million this year toward a grant program. This year’s awardees were announced in late March, and applications for 2014 will be out in August and due in November. This funding could be a huge boost to our local municipalities struggling to maintain the 100+ dams on the Huron.

Link to NRSA: http://water.epa.gov/type/rsl/monitoring/riverssurvey/index.cfm
RiverUp!
Community projects celebrate the Huron’s natural assets. Check the map for upcoming recreation features in your area, and get ready to go outside!

Watershed communities and businesses are creating and improving recreation opportunities for residents and tourists all along the length of the Huron River. More than $30 million of river-related improvement projects are underway or planned in 2013. Several of those projects are depicted in the map on this page.

RiverUp! builds on and, in many instances, spurs these projects that are part of a community movement to embrace and celebrate the assets of the river for the benefit of local economies, and conservation of our shared natural heritage.
we can flip to warm up the water. We certainly can’t go out and kill the organisms living in the stream. There are rules against those sorts of things, and rightly so. So what’s a scientist to do? Sometimes big questions require small solutions. If we can’t bring our laboratory out to the stream, we can instead bring the stream into our laboratory.

A Hundred Mini-Hurons
To do so, we use mesocosms (see photos). Mesocosms are miniature versions of natural ecosystems that attempt to mimic many of the conditions of the natural system in a smaller, more controlled setting. Using mesocosms, instead of working on one full-scale Huron River, we can work on a hundred “mini-Hurons.” We can add a little bit of fertilizer to one mesocosm, or use a $10 aquarium heater to raise the temperature of another. We can control what organisms go into these mesocosms and more easily measure what’s going on inside. This control often comes at a cost, though, as we lose the ability to include larger organisms like birds or fish, and we shrink things down to the point that some processes that take place in the river may no longer take place in a mesocosm (e.g., floods and droughts, interactions with riparian areas). That said, mesocosms like these still offer a unique way to address interesting scientific questions, and they allow us the replication to achieve precise estimates of important ecological processes that would be difficult to measure in an actual river.

To create our mini-Huron Rivers, a group of researchers at the School of Natural Resources and Environment at the University of Michigan first collected over 800 gallons of water out of the Huron, then brought it back to our lab to fill up our mesocosms. We then took about thirty different rocks from the Huron and used toothbrushes to scrub off all of the algae that were covering those rocks to add to our mesocosms. We avoided sampling benthic macroinvertebrates, as we were mainly interested in the algae for this experiment. We focused on algae and bacteria because they form the base of most aquatic food webs, and they are responsible for many processes that control water quality. However, future work could certainly include these important stream organisms. After adding in some gravel, lights, propellers to re-circulate the water, and after several long days of work, we had over 100 miniature streams in our laboratory.

Finding the Top Stressors
We used these streams to address a question that HRWC and other resource managers often face: if you were in charge of managing the Huron River and maintaining water quality in the face of existing and emerging stressors, where should you focus your efforts, given you don’t have the time or the budget to address all of them? To do this, we first came up with a list of stressors we felt were important in our local watershed. These included things like climate change, herbicides and fertilizers, sediment loading, and species loss. We then exposed a subset of our streams to each of our stressors, one stressor per stream, and monitored how the algae responded over time. At the end of the experiment, approximately two months after we added in water, algae, and stressors, we determined how each of the stressors were impacting rates of algal primary production (photosynthesis), a common measure of how well an ecosystem is functioning. Because we performed the experiment in a controlled, replicated environment, we could then compare results across stressors and make strong inferences about which of the stressors are the most impactful and should be high on our priority lists for maintaining water quality.

And what did we find? Broadly, our experiment showed that chemical stressors, and in particular herbicides, had the greatest potential to disrupt the functioning of the stream mesocosm communities. Species extinctions also ranked highly, while temperature increases and sediment loading ranked lower. While we certainly won’t go as far as to say stop using herbicides, we do strongly encourage users to adhere to all warnings on the product labels. Furthermore, if the chemical isn’t meant for aquatic use, keep it well away from any nearby lakes and streams. Good practices can include not spraying immediately prior to...
By the 1960s, the catch had dwindled to 300,000 pounds per year. The lake trout population was in rapid decline, and eventually the species became extinct in Lakes Ontario, Huron, Erie, and Michigan. A small population of lake trout was able to survive in Lake Superior. Other Great Lakes fish like whitefish, walleye, and steelhead (lake-run rainbow trout) were also hit hard by the sea lamprey, though not as severely as the lake trout.

Lampreys were not unknown to the Great Lakes prior to the sea lamprey invasion. In fact, the Great Lakes system has four native lamprey species: chestnut, silver, American brook, and northern brook lampreys. Both the chestnut and silver lamprey are parasitic fish, meaning that in their adult stage they feed on the blood of other fish. However, they rarely kill their host fish.

On the other hand, sea lampreys are parasitic fish that quite readily kill their hosts. The sea lamprey picked the lake trout, the top predator of the Great Lakes, as its preferred host. Prior to the sea lamprey invasion, commercial harvests of lake trout averaged 15 million pounds per year.

DEFINITIONS:
Native or indigenous: species that exist in an area as the result of natural processes, with no human intervention.

Non-native or exotic: species that have been introduced either accidently or intentionally by humans. Accidental introductions include fish entering through freighter ballast water and the construction of canals. Intentional introductions happen through rogue individual actions like dumping a pet fish into a lake or through purposeful management like the stocking of salmon into the Great Lakes. A non-native species may or may not be considered invasive depending on the consequences.

Invasive: non-native species that negatively affect the physical and/or biological components of the natural ecosystem.
Invasive Control Success

The sea lamprey is one of the few Great Lakes invasive species that fisheries managers have successfully controlled. In the 1950s, scientists developed a lampricide called TFM (3-trifluoromethy-4-nitrophenol) which killed only the sea lamprey and had no discernible effect on other wildlife. This chemical, sprayed into lamprey nursery streams, is quite effective, although expensive. Eventually other techniques were developed, like placing barriers at the mouths of the nursery streams and releasing sterile male lampreys to compete with the normal males. All of these techniques helped reduce the Great Lakes populations of sea lamprey by 90% from their peak abundance. The control efforts are still ongoing today, since it has proven impossible to eradicate the sea lamprey altogether.

Lake trout populations have increased since the effective control of the lamprey. Lake trout have returned to all of the Great Lakes, with varying success. Their population in Lake Superior was noted as “good” and “improving” in a 2009 EPA document, while the other Great Lakes have populations described as “poor” and “mixed.” In general, lake trout populations remain far below historic levels, and heavy restrictions on commercial and recreational lake trout fishing remain.

1966-1972: Using Fire to Fight Fire

At the same time the sea lamprey were decimating the top predators of the Great Lakes, a small forage fish, the alewife, entered the Great Lakes through the same route as the sea lamprey. The decline of top predator fish allowed the alewife population to grow unchecked. In addition, the alewives out-competed native forage fish (lake herring, emerald shiner, some species of chub, and yellow perch). By the 1960s, the alewives ate so much of the plankton crop of the Great Lakes that they exhausted the bottom of the food web and reduced competitor populations. Ironically, they put such a strain on the food web that millions of the alewives themselves died each summer, washing up on Great Lakes beaches and creating a stinky mess requiring tractors and bulldozers to rake, pile, and clear away the carcasses.

In 1965, Dr. Howard Tanner, chief of the Michigan Department of Natural Resources Fisheries Division, directed research to look at how the current condition of the Great Lakes could be improved for both sport fishing and ecosystem stability. Fisheries researchers noted that steelhead were doing very well in Lake Michigan where alewives were abundant. Since steelhead lived in upper river tributaries for the first two years of their lives, and then swam down to the Great Lakes for their adult lives, the fish were large enough that they did not eat the same items as the alewife, so they were unaffected by alewife competition. In fact, the steelhead were often big enough to eat the younger alewives themselves.

After this observation, DNR management decided to embark on a large scale effort to stock other fish that could grow in stream tributaries, live as adults in the Great Lakes, and feed on the excess numbers of alewives. They desired to find a fish that could fit into the top predator role that was lost with the decimation of the lake trout. Managers began cultivating millions of the non-native Coho and Chinook (king) salmon in the State’s fish hatcheries and planted year-old fish into tributaries. The
program proved very successful: the salmon survival rate was extremely high, and the alewife provided a plentiful food source. In Lake Michigan, Coho were able to grow from one ounce to ten pounds in 17 months. The annual summer die-offs of millions of alewife also largely ceased, although smaller die-offs still occurred.

The arrival of the sea lamprey and alewife mark a distinct milestone in the life of the Great Lakes. The overhunting of whitefish and sturgeon in the late 19th and early 20th centuries altered many ecological interactions of the Great Lakes, but the sea lamprey, alewife, and subsequent salmon stocking radically changed the ecosystem to such a great extent that today, most people are not aware of which fish species are indigenous to the Great Lakes.

The Lakes’ original ecosystem cannot be restored, and it will continue to change with every new invasive species that is established. The zebra and quagga mussels and round gobies are among the newer non-natives that have joined the Great Lakes ecosystem; the silver and bighead carp (aka Asian carp) are potential invaders just waiting for an electric barrier to fail. With so many potential variables, it is difficult to predict the future for fish in the Great Lakes.

— Paul Steen

Fish Species Introduced into the Great Lakes

Successful, intentional introductions
- Atlantic salmon
- Brook trout
- Brown trout
- Chinook salmon
- Coho salmon
- Common carp
- Goldfish

Unsuccessful, intentional introductions
- American eel
- American shad
- German whitefish
- Chum salmon
- Sockeye salmon
- Japanese salmon (masu)
- Cutthroat trout

Accidental introductions, with destructive results
- Sea lamprey
- Alewife
- Round goby
- Tubenose goby
- Rudd
- Ruffe
- White perch

1. Highly successful introductions; widespread distribution
2. Limited success; narrow distribution or small populations.
3. Brook trout only had a narrow range in Michigan’s Upper Peninsula prior to widespread stocking, which is why this species is considered non-native.

Sources:

Coming NEXT!

“200 Years of Michigan Fish” wraps up with a current perspective on many of the topics addressed thus far: status of the Great Lakes fish community, fish stocking and stream fish management, invasive species, and watershed management.

Put those old books to good use!

Books By Chance donates the proceeds from their internet sales of old and unwanted books, CDs and DVDs to HRWC. Your donations have earned $16,000 for HRWC so far!

We like the slightly esoteric, academic, scholarly and especially university presses. Please bring your donation to the HRWC office, weekdays, 9am - 5pm. We will handle the rest. QUESTIONS: Rebecca Foster (734) 769-5123 x 610 or rfoster@hrwc.org.
Founded in 1965, the Huron River Watershed Council (HRWC) is southeast Michigan’s oldest environmental organization dedicated to river protection. HRWC works to inspire attitudes, behaviors, and economies to protect, rehabilitate, and sustain the Huron River system.

HRWC coordinates programs and volunteer efforts that include pollution prevention, hands-on river monitoring, wetland and floodplain protection, public outreach and education, and natural resources planning.

Individuals, local businesses and more than 40 communities support HRWC’s work through voluntary membership.
H2O Heroes who have been following HRWC’s education and outreach efforts for the past two years know that saving water saves energy. Pumping, heating, and treating water supplies accounts for 13% of our nation’s electrical energy and emits 290 million metric tons of CO2 every year.

A Hero Rises
In an effort to recruit even more H2O Heroes, HRWC’s Saving Water Saves Energy project has launched a new video public service announcement and website to promote the water-energy connection. “A Hero Rises” takes a lighthearted look at using efficient plumbing fixtures to help conserve water and energy. The website also provides plenty of indoor and outdoor water-energy-saving tips and links to the internet’s best household and personal water calculators. Go to H2oHeroes.org to view the video and learn more.

Never Waste
HRWC’s Saving Water Saves Energy project also continues to work in step with national partners to promote water conservation. Never Waste is a new campaign launched by the Alliance for Water Efficiency (AWE) to build awareness about the impact of water waste. Never Waste quantifies the amount of water wasted in our daily lives by comparing it to an everyday object – a water bottle – and encourages consumers to make a measurable impact by wasting less. Help raise awareness by purchasing a Never Waste water bottle at www.NeverWaste.org.

Tips to Beat the Peak
Residential outdoor water use in the United States accounts for more than seven billion gallons of water each day, mainly for landscape irrigation. Experts estimate that as much as half of this water goes to waste due to overwatering caused by inefficiencies in irrigation methods and systems.

Homeowners who use an irrigation system with a clock timer should consider upgrading to a WaterSense labeled controller. WaterSense labeled irrigation controllers act like a thermostat for the lawn, using local weather data to determine when and how much to water, reducing waste and improving plant health.

Even for homes without irrigation systems there are a variety of ways to save water outdoors:

- Reduce lawn areas and plant native species that need less water in the summer.
- Assign landscape areas different zones depending on sun or shade exposure, soil and plant types, and type of watering needs, and then adjust watering schedules based on those zones.
- Allow grass to go dormant during a heat wave by not watering it – dormant grass will rebound to green lushness when the cooler weather and rains return.
- Raise lawnmower blades to at least three inches – longer grass promotes deeper root growth resulting in a more drought resistant lawn, reduced evaporation, and fewer weeds.

Go to H2oHeroes.org for more tips on saving water outdoors.

— Pam Labadie

The Saving Water Saves Energy Project is made possible by a grant from the Masco Corporation Foundation.
Adapting to a Changing Climate

Communities in the watershed come together to become more climate-ready

Climate adaptation is an emerging field. Initial efforts to combat climate change focused on climate mitigation, looking at strategies to slow or stop the changes to the Earth’s atmosphere that are changing the climate. It is critically important work that must continue. Yet people are realizing that mitigation alone is not enough. Changes are already occurring, necessitating preparations that should start now. This is climate adaptation – examining what can be done to reduce the impacts of climate change. The push to slow the release of carbon and other heat trapping gasses is essential. Simultaneously, communities must prepare for climate variability.

Systems, both built and natural, are designed to succeed under a certain range of climatic conditions. Current climate conditions, and those predicted for the future, are changing that range of conditions in the Huron River watershed. This has repercussions for the way communities are planned, built and protected. Drought, storm events with larger rainfalls and shifting of rain/snow patterns each have implications to business-as-usual. For example, will storm drains overflow more frequently? Will street trees be able to withstand prolonged summer drought? Will there be more conflict around the multiple uses for water during periods with low water levels? Will floodplains and low-lying areas experience flooding more often? What does this mean for existing and future development?

Creating Climate Resilient Communities

Over the past year, HRWC has facilitated a process to allow three sector-based working groups to consider the implications of climate change in the watershed and develop some early solutions that will help communities be more prepared for uncertainty and variability in local weather patterns. This March, more than 40 stakeholders from throughout the watershed met to hear the sector teams share outcomes from the first year of the project.

Climate adaptation is adjusting to a new set of climatic attributes. It is a concept for guiding action to ensure sustainable development, reduce vulnerability and minimize risk to humans and the environment resulting from climate change.

Project Outcomes

Paul Bairley of Forestry Consulting Services shared the work of the Natural Infrastructure work group, which produced a series of fact sheets that summarize expected impacts of climate change to native tree species of the Huron River watershed and the natural communities within which they occur.

Jerry Hancock, of the City of Ann Arbor and member of the Water Infrastructure work group, discussed the need for improved precipitation frequency data used to inform stormwater and floodplain-related decisions, and the steps the group proposes for achieving those improvements. He also shared a list of “no regrets” actions the team felt were high priority for communities of the watershed to implement in order to improve the practice of stormwater management.

Jeff Allen from the Charter Township of Ypsilanti represented the In-stream Flows work group. He introduced the audience to a newly formed Dam Operators Network to facilitate communication among main stem dam operators, which will improve day-to-day operations and the preparedness of the group to respond to emergency situations.

What is Next?

HRWC will continue facilitating sector team discussions to develop additional priorities to pursue. Additionally, HRWC will be sharing the outcomes of the work groups with communities throughout the watershed and promoting adoption of the strategies with appropriate stakeholder groups.

These are important early efforts to create more climate resilient communities in the Huron River watershed. Climate adaptation occurs at the local level, and the communities of the Huron are at the front edge of this emerging field. To learn more about the work of any of these teams, reports are available at www.hrwc.org/climate-resilient-communities.

– Rebecca Esselman

The Climate Resilient Communities project is made possible by funding from the Mott Foundation, Friedman Family Foundation, City of Ann Arbor, Porter Family Foundation, Esperance Family Foundation, Upton Foundation, Washtenaw County Water Resources Commissioner, and GLISA.
HRWC Summer Events

MEMBERSHIP MATTERS

Our members join HRWC for a variety of reasons. Many enjoy making a hands-on contribution in addition to their financial support.

Katy Greenwald

Katy Greenwald is a biology professor at Eastern Michigan University and a recent volunteer who also saw the value in membership.

“I became a member to support the HRWC’s conservation work,” Greenwald explained. “Professionally, I am an ecologist, and I work with amphibians (many of which are very sensitive to habitat degradation, environmental contaminants, etc.). Personally, my husband and I live on the Huron and spend a great deal of time enjoying the river. We love to kayak, bird watch, fish, and have friends over for cookouts on the river. Since conservation and education are so close to my heart, I am happy to be able to support an organization doing this type of work literally in my backyard!”

Graham Battersby

Graham Battersby and his family got hooked on HRWC through River Roundup four years ago, when one of his daughters brought a flyer home from school. “River Roundup was fantastic,” he recalls. “It taught the kids the value of water and its impact on life. We were out having fun with bug collection, but it was the more intuitive learning – the good stream vs. bad stream and why – that I found invaluable.” The Battersbys became HRWC members right away. “HRWC is resource-constrained, but does a great job at involving and empowering its members, which results in more resources. The money is put to good use and not wasted,” he says.

Won’t you please join them? Contact Rebecca at 734-769=5123 x 610 or rfoster@hrwc.org.

RECREATION

www.hrwc.org/events/summer-events

Various dates and locations
Paddles, Swims, Walks, Fly Fishing
There is no WiFi on the Huron River, but we promise you a better connection.

VOLUNTEER

www.hrwc.org/volunter

Sunday, June 9, 2 - 4pm
River Scout Training
Scout a local stream with a protective eye, looking for potential problems.

Sunday, August 4, 2 - 5pm
Measuring & Mapping Training
Learn to “read a river” by characterizing the bed, banks, and other indicators of stream health.

Saturday, August 17, time TBD
River Cleanup
Near Milford and Ypsilanti - get those beer cans, bikes, and fishing lines out of the river!

Coming this Fall...
Suds on the River
Sign up to work our annual fundraiser by emailing msmith@hrwc.org.

COMMUNITY

www.hrwc.org/events

Friday, June 14, 6 - 9pm
Mayor’s Green Fair
Main Street, downtown Ann Arbor – special event: Stormdrain Art Competition; www.a2gov.org

Sunday, July 14, activities from 8:30am - 4pm
Huron River Day
Gallup Park, Ann Arbor; www.a2gov.org
Stewardship Awards

Special thanks for exceptional dedication!

Korinne Wotell received the “Volunteer of the Year” award for all of her work in 2012. Kori is one of those rare people with the time, energy, enthusiasm, and drive to help HRWC across the board. In 2012, she volunteered 196 hours across six programs, including many events and activities that didn’t even exist as volunteer opportunities at the start of the year. “This is the most meaningful thing I have ever done,” Kori said after learning of the award. “HRWC makes it so easy to do good things and make a valuable contribution.” Over the past year, Kori has grown from an excited “Mom from Whitmore Lake” into a watershed leader, who instructs groups about how they can make a contribution. Thanks, Kori, for your time, energy and fun-loving spirit!

John Carver received the “That’s Using your Headwaters” award for his work on RiverUp! in the last two years. John used his head to craft and instigate the RiverUp! project with numerous private and public partners. His vision of a restored and vibrant Huron River continues to challenge and push HRWC staff and partners….in a good way! John’s grass-roots focus and “let’s do it!” attitude have spurred progress on the Huron River Water Trail signs and the paddlers companion booklet, the completed Superior portage, and mapping tools to visualize progress and spur funding. “It’s the right thing to do,” is John’s motto, and we can’t agree with him more. Thanks, John!

HRWC is excited to honor **Eunice Burns** with our first **Herb Munzel Lifetime Achievement Award**! Eunice has been active in Ann Arbor civic and community affairs, city politics and the environment since the mid-1960s. For more than four decades she has been a board member at HRWC and, along with Shirley Axon, was one of the founders of Huron River Day. Eunice entered local politics with her successful campaign in 1962 for a seat on the Ann Arbor City Council and was re-elected in 1964 and 1966. In 1968 she became a member of the Ann Arbor Planning Commission, serving until 1974. She has also been active in Ann Arbor’s Downtown Development Authority (DDA). Eunice received her BS degree from Wisconsin State College and received her Master’s in Urban Planning from the University of Michigan in 1970.

Eunice recalls the exact moment she learned about the very limited amount of fresh water in the world and decided to do something about it. After some considered thought, she concluded that working at the local watershed level with one river was a scale where she could make a significant difference. She was right! Eunice’s constant presence, keen observations, and commitment to the education of children in the water sciences has helped foster the development and effectiveness of HRWC for over forty years.

Thanks, Eunice, for a lifetime of achievements we can all find inspiring!
You are important to us! If your name is misspelled, incorrectly listed, or omitted, please accept our sincere apologies and bring the error to our attention so that we may correct our records. Contact Margaret Smith at (734) 769-5123 x 605.

Thank you to our generous supporters • February through April, 2013

Donald Afflerbaugh
Peter and Sally Allen
Norman and Sandy Andresen
Ann Arbor Area Community Foundation
Anonymous
Allison A. and L. David Arscott
Margaret Axon
Mary and Bill Bajcz
Rebecca W. and Brian Ball
Raymond Barbehenn and Patricia Little
Jacqueline M. Beaudry
Harry B. and Kathryn Benford
BGreen Today
Wilbur C. Bigelow
Thomas J. and Mary F. Bissonnette
David Blochwitz
Janis Ann Bobrin and Michael Allemang
Books By Chance
George Brach
William F. Brinkerhoff and Kathleen Sample
David and Sharon Brooks
Lance Burghardt
The Carver Family
Jennifer Casler
Susan M. Caumartin and Todd B. Stewart
Jack Cederquist
Dan Chapman
Jackie A. and Mary Jane Clark
Jared J. Collins and Sue Ransom
Charles P. Compton
Phelps M. and Jean D. Connell
Ralph and Joann Cook
Howard and Anne Cooper
Bruce Corwin
Paul Courant and Marta Manildi
Robert J. Courdway
Paul and Patricia Cousins
Suzanne Croll
Jim Crowfoot and Ruth Carey
Mary H. Dobson
Steve and Judy Dobson
Robert Droppelman and Julie P. Weatherbee
Mary Duff-Silverman
Earth Share of Michigan
William D. and Karen A. Ensmering
Joe Esseichik
John Ettor
David L. Fanslow and Joann F. Cavaletto
Federated Campaign Stewards
Carlos Fetterolf
John W. Ford
Howard P. and Margaret W. Fox
Pat Frey and Larry Deck
James A. Frey and Lisa Brush
Karl Gage
Ron Gamble
Emily Gobright
Irwin Goldstein and Martha Mayo
Suzanne D. Goodrich
Lloyd Green and Julie Rubin
Katy Greenwald and Brandon Groff
Dunrie A. Greiling and David B. Higbie
Kathleen M. Hanlon-Lundberg and L. Eric Lundberg
Lee W. Hartmann
Mary Hathaway
Laura Lee Hayes and Robert C. Brill
Jane A. and Daniel F. Hayes
Rebecca Head and David Stead
Wendel and Nancy Heers
Lucia and Henry Robert Heinhold
Magdalena Herkhof
William and Susan Hermann
John R. and Martha K. Hicks
Barbara Higman
Patrick Lee Hudson
Craig A. Hupy and Marie C. Lemmer
Marjorie J. Jacobson
Owen C. and Jane R. Jansson
Jolly Pumpkin Cafe and Brewery
Kristin H. Jordan
Bonnie J. Kay and Tom G. Robins
Julia A. Kennel
Gisela Lendle King
David and Theresita Morre Kluck
Joan Kooistra Brush and Andrew Brush
James Kralik
Phillip Kroll
Matthew LaFleur
Alesia Lapinsky
Myra Larson
Gayle Larson
Richard Keller
Jo Latimore and Ralph Kridner
Mitchell and Ann Marie Leak
Graham E. Lewis
Nancy Marie Lindner
Lennart H. and Betty Lofstrom
Linda Lombardini and Sandi Smith
Barry Lonik
Dean and Gwendolyn Louis
Richard Paul Manczak
Joan and Michael Martin
Maureen Martin and Mike Penskar
Rick Martin
Masco Corporation Foundation
Frederick C. Matthaei, Jr.
Mary McClain
R. Griffith and Patricia McDonald
Maureen McGraw
Amy Mcloughlin
Harvey Michaels and Gloria Helfand
Roger and Katherine Mills
Vera Jean and Oscar Montez
Thomas E. and Eleanor S. Moore
Dallas Moore and Judith Lehman
Michael C. Moran and Sharlet Brown
Cathy and Mike Muha
Ruth Munzel
Larry and Sarah Noorden
NTH Consultants, Ltd.
Diane O’Connell and James R. Miller
Margarette Orlik-Walsh and Martin Walsh
Lisa D. and Max Perschke
Pfizer
Louise Pirianan
Raymond Pittman
David Polley and Janis Miller
Jeffrey and Joanna Post
Ethel K. Potts
Evan Pratt and Ann Taylor Pratt
James and Ligia Reynolds
Heather and Shawn Rice
John M. and Marilyn A. Rintamaki
Elizabeth and Mike Rother
Laura R. Rubin and John C. Lofy
Roberta H. Rubin
Adam and Amy Samples
Mary Ann Schaefer
Annette van der Schalie
Peter and Mindi Schappach
Donald R. and Ann Schwartz
Katherine Scott
Richard A. Scott
William L. Secrest and Misty Callies
Joanna J. and Michael F. Semanske
David G. and Elvira Shappirio
Susan E. Shink
Jennifer Slajus
Jonas L. Snyder and Elsie Dyke
Kenneth G. and Antoinette Spears
Spicer Group
Clarence J. Stielstra
Kay E. Stremler and Ron Sell
Marilyn R. and Guy D. Sullins
Michelle Swiwnski
F. Brian and Lee Talbot
Kathi Talley
Phillip Tchou
Alice Sano Teachout
Doris H. Terwilliger
James R. and Carol A. Thiry
Jim and Mary Lynn Thomson
Heidi Tietjen
TOYOTA
Trader Joe’s Co.
John E. and Penelope S. Tropman
Carrie Turner and Erin Trame
Nub and Jan Turner
Turner Family Foundation
Karen and David Uler
Lynn Vaccaro and Jason Demers
Scott and Ruth Wade
Steuart C. and Lucy K. White
Vicki Whistock
David J. Whible
James O. and Mary Ann Wilkes
Jay E. and Sherry L. Williams
Samantha and Aaron Wolf
Susan O. and Jon K. Wooley
Korinne and Joseph Wotell
Roger and Barbara Wykes
Emily C. and Gary Yazors
Jason and Margaret Zawacki
United Way
Rockey Bennett
Paul Darling
Catherine Doherty
Susan and Michael Goold
Nicholas Hadwick
Walter P. Hogan and Wendy L. Woodworth
Raquel Huffman
Fritz and Monica Kaenzig
William Koch
Charles M. Monsma
Stephen Raymond
Thomas C. and Jean T. Shope
Erin Spanier
Lia and Richard Stevens
Thank you to our volunteers • February through April, 2013

Huron River Watershed Council Board of Directors

Executive Committee
Mary Bajcz
Chris Benedict
Janis Bobrin
Paul Cousins (Vice Chair)
Gene Farber (Treasurer)
John Langs
Dick Norton
Diane O’Connell
Evan Pratt (Chair)

Board of Directors
Norm Andresen
Kathy Aseltyne
Scott Barb
Matt Bolang
Eunice Burns
Cheryl Darlton
Steve Francoeur (Alternate)
Fred Hanert
Michael Howell
Craig Hupy
Mark Irish
Gerry Kangas
Matthew LaFleur
Barry Lonik
Sally Lusk
Cheryl Mackrell
Jim Martin
Lisa McGill
Scott Munzel
Dick Norton
Erik Petrovsks
Molly Norton (Alternate)
Peter Schappach
Sue Shink
Deeda Stanczak
Barry White
Dave Wilson
Lisa Wozniak
Steven Wright
Melissa Zaksek (Alternate)

Daniel Allen
Jacob Allen
Jake Allen
Norman Andresen
Trip Apley
Bruce Artz
Shirley Axon
Mary Bajcz
Noemi Barabas
Scott Barb
Eric Bassey
Alison Battersby
Grace Battersby
Megan Battersby
Bonnie Bauman
John Bauman
Christopher Benedict
William Benyo
Torsten Berg
Hiren Bhatt
Minali Bhatt
Nimeya Bhatt
Bryan Bisanz
Diane Goff
Juli Bissonette
Luther Blackburn
Beth Blanchard
Bob Blanchard
Robert Blanchard
Janis Bobrin
Joe Bognar
Steve Bognar
Matt Bolang
Joseph Boore
Howard Borden
Adrienne Bortell
Cassidy Brimer
Diane Goff
Jed Bromfield
Max Bromley
David Brooks
Sharon Brooks
Jessica Broombaugh
Eunice Burns
Lauren Burns
Lee Burton
Nick Burton
Ray Caleca
Barbara Campbell
Jeffrey Campbell
James Carbone
Richard Carlisle
Roberta Carr
Ananthi Chandran
Richard Chase
Sangio Choi
Jared Collins
William Cooney
Paul Cousins
Rodney Cox
William Craig
Trevor Crosson
Shannon Culver
Mike Cutsinger
Wes Daining
Lucena Dalmaso
Cheryl Darlton
Jane Davis
Kyle Donnellon
Sharon Eagle
James Engman
Walt Ernst
James Fackert
Ron Fadoir
Ronald Fadoir
Meg Fairchild
Gene Farber
Jan Finn
Robert Finn
Emma Flynn
Ryan Franetich
Steven Francoeur
Georgian Francyk
Pat Frey
Emily Furuiuchi
Karl Gage
Jacqueyn Ganfield
John Gannon
Valerie Gavril
Robert Geise
Jeremy Geist
Dane Goff
Jesse Gordon
Stephen Grafton
Katy Graham
Danielle Gray
Lori Hachigian
Katie Beth Halloran
George Hammond
Frederick Hanert
Jay Hanks
Lindsay Hanna
Judith Heady
Tammie Heazlit
Rob Henderson
Magdalena Herkhof
Caleb Horvath
Craig Hupy
Mark Irish
Donald Jacobson
Saeborn Jung
Lenny Kafka
Janet Kahan
Bailey Keeler
Leslie Kellman
James Kraki
Matthew LaFleur
Jacqueline Lamont
John Langs
Ted Layher
Genevieve Leet
Emily Levine
Graham Lewis
Peggy Liggot
Gwen Lindsay
John Lloyd
Barry Lonik
Barbara Lucas
Sally Lusk
Cheryl Mackrell
Chuck Mankin
Dianne Martin
James Martin
John Martin
Ed McCLaire
Kathy McClure
Lisa McGill
Patti McCall McGuire
Jack Meluch
Norm Meluch
Renee Sherman Mulcrone
Scott Munzel
Toni Nigg
Diane O’Connell
Kealy Opelt
Elise Orb
Jerry Paulissen
Ted Peters
Renee Pinter
Evan Pratt
Stephanie Pratt
Brennan Quinn
Alison Rauss
James Richardson
Cedric Richner
Mori Richner
Roxie Richner
Sorbie Richner
Catherine Riseng
Alex Riusi
Cassie Roberts
John Roberts
Donald Rottiers
Peter Schappach
Jennifer Schlicht
Donald Schwartz
Ron Sell
Susan Shink
Jean Shope
Andrew Slaven
Robin Sloan
Damien Smith
James Smith
Jama Smith
Joey Smith
Kristopher Smith
Mickey Sperlich
Cara Spindler
Eric Standing
Mike Standing
Ryan Stark
Wayne Stark
Margaret Steiner
Michael Super
Jiaxing Tan
Braden Tate
Anne Tavalire
Gayle Thomas
Susan Thompson
Emily Torrance
Megan Torrance
Dani Toussaint
Chatura Vaidya
Jhena Vigrass
Ramachandra Vijapurapu
Konsta Virtanen
Sam Wallace
Scott Wasielewski
Barry White
Tom Wickowski
Caroline Wilkinson
Paul Williams
David Wilson
Deborah Wolter
Klaus Wolter
Carson Wotell
Kane Wotell
Korinne Wotell
Lisa Wozniak
Steven Wright
Jimmie Wright
Pranav Yajnik
Lauren Yelen
Jon Yost
Kan Yu
Melissa Zaksek

Jared Collins
William Cooney
Paul Cousins
Rodney Cox
William Craig
Trevor Crosson
Shannon Culver
Mike Cutsinger
Wes Daining
Lucena Dalmaso
Cheryl Darlton
Jane Davis
Kyle Donnellon
Sharon Eagle
James Engman
Walt Ernst
James Fackert
Ron Fadoir
Ronald Fadoir
Meg Fairchild
Gene Farber
Jan Finn
Robert Finn
Emma Flynn
Ryan Franetich
Steven Francoeur
Georgian Francyk
Pat Frey
Emily Furuiuchi
Karl Gage
Jacqueyn Ganfield
John Gannon
Valerie Gavril
Robert Geise
Jeremy Geist
Dane Goff
Jesse Gordon
Stephen Grafton
Katy Graham
Danielle Gray
Lori Hachigian
Katie Beth Halloran
George Hammond
Frederick Hanert
Jay Hanks
Lindsay Hanna
Judith Heady
Tammie Heazlit
Rob Henderson
Magdalena Herkhof
Caleb Horvath
Craig Hupy
Mark Irish
Donald Jacobson
Saeborn Jung
Lenny Kafka
Janet Kahan
Bailey Keeler
Leslie Kellman
James Kraki
Matthew LaFleur
Jacqueline Lamont
John Langs
Ted Layher
Genevieve Leet
Emily Levine
Graham Lewis
Peggy Liggot
Gwen Lindsay
John Lloyd
Barry Lonik
Barbara Lucas
Sally Lusk
Cheryl Mackrell
Chuck Mankin
Dianne Martin
James Martin
John Martin
Ed McCLaire
Kathy McClure
Lisa McGill
Patti McCall McGuire
Jack Meluch
Norm Meluch
Renee Sherman Mulcrone
Scott Munzel
Toni Nigg
Diane O’Connell
Kealy Opelt
Elise Orb
Jerry Paulissen
Ted Peters
Renee Pinter
Evan Pratt
Stephanie Pratt
Brennan Quinn
Alison Rauss
James Richardson
Cedric Richner
Mori Richner
Roxie Richner
Sorbie Richner
Catherine Riseng
Alex Riusi
Cassie Roberts
John Roberts
Donald Rottiers
Peter Schappach
Jennifer Schlicht
Donald Schwartz
Ron Sell
Susan Shink
Jean Shope
Andrew Slaven
Robin Sloan
Damien Smith
James Smith
Jama Smith
Joey Smith
Kristopher Smith
Mickey Sperlich
Cara Spindler
Eric Standing
Mike Standing
Ryan Stark
Wayne Stark
Margaret Steiner
Michael Super
Jiaxing Tan
Braden Tate
Anne Tavalire
Gayle Thomas
Susan Thompson
Emily Torrance
Megan Torrance
Dani Toussaint
Chatura Vaidya
Jhena Vigrass
Ramachandra Vijapurapu
Konsta Virtanen
Sam Wallace
Scott Wasielewski
Barry White
Tom Wickowski
Caroline Wilkinson
Paul Williams
David Wilson
Deborah Wolter
Klaus Wolter
Carson Wotell
Kane Wotell
Korinne Wotell
Lisa Wozniak
Steven Wright
Jimmie Wright
Pranav Yajnik
Lauren Yelen
Jon Yost
Kan Yu
Melissa Zaksek

February through April, 2013
Join HRWC in protecting the Huron River Watershed

I wish to become a member of HRWC in the amount of:

- $35 Mayfly
- $50 Crayfish
- $100 Dragonfly
- $250 Soft Shell Turtle
- $500 Salamander
- $1,000 Smallmouth Bass
- $2,500 Great Blue Heron
- Other _______________

Name __

Address ___

City ___________________ State ___________ Zip ______

Phone __________________________

☐ Please send me email updates at: ________________

Send this form with your check to HRWC, 1100 North Main Street, Ann Arbor, MI 48104 OR Save postage and the environment by donating online at www.hrwc.org/support-us. HRWC is a 501©3 organization and contributions are tax deductible.